Abstract

The microstructure and crack propagation path of 2.5D SiCf/SiC composites were observed by synchrotron radiation x-ray computed micro tomography (SR-μCT) equipped with in-situ tensile device. The results showed that the pore morphologies of the SiCf/SiC composites are mainly divided into three types in three-dimension space: interconnected pores, isolated pores and micro pores in fiber bundles. The crack initiation occurred at the root of the defects under in-situ tensile load and the crack was perpendicular, parallel to the stress axis or mixed mode to propagate. At the interface scale between fiber and matrix, the crack deflection will be controlled by physical parameters such as fracture energy release rate and the modulus of elasticity. At the fiber bundle scale, the crack is easy to shear propagate along the interface between weft and warp fiber bundles due to the existence of the mechanical bonding and residual tensile stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.