Abstract

This work analyzes the influence of cerium content (6-15 wt%) on a TiO(2) support over the structure and water gas shift (WGS) activity of Pt catalysts. The structural properties of these Pt/Ce-TiO(2) catalysts were characterized by XRD, TEM and XANES. Physicochemical characterization of the catalysts showed differences in the structure and dispersion of Ce entities on the support with Ce loading. For the samples with low ceria content (6 wt%), cerium is deposited on the support in the form of CeO(x) clusters in a highly dispersed state in close interaction with the Ti atoms. The formation of CeO(x) clusters at low Ce-loading on the support facilitates the dispersion of small particles of Pt and improves the reducibility of ceria component at low temperatures. The changes in platinum dispersion and support reducibility with Ce-loading on the TiO(2) support lead to significant differences in the WGS activity. Pt supported on the sample with lower Ce content (6 wt%) shows better activity than those corresponding to catalysts with higher Ce content (15 wt%). Activity measurements coupled with catalysts characterization suggest that the improvement in the reducibility of the support with lower Ce content was associated with the presence of CeO(x) clusters of high reducibility that improve the chemical activity of the oxide-metal interfaces at which the WGS reaction takes place.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.