Abstract
Wide-angle light scattering (WALS) was used for in situ measurements of droplet and nanoparticle size distributions during the synthesis of titania and iron oxide particles from liquid precursor solutions in the standardized SpraySyn burner for spray flame synthesis. Titania was synthesized from titanium tetraisopropoxide (TTIP) and iron oxide from iron(III) nitrate nonahydrate (INN) using ethanol (EtOH) as solvent. Scattering images were taken at heights up to 120 mm above the burner surface and classified into droplet and particle scattering. Droplet size distributions were derived from a sequential analysis of scattering data containing the oscillating Mie pattern, the lognormal size distribution parameters for spherical and fractal particle fractions from a multivariate approach on averaged particle scattering data. The results show that the precursor addition leads to altered evaporation behavior and even droplet disruption probably induced by puffing or micro-explosions compared to pure EtOH. In the case of TTIP (a hygroscopic alkoxide), the synthesis of a large fraction of spheres was observed, while the nitrate INN leads to the formation of mostly fractal aggregates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.