Abstract

Foods meet acid pH during gastric digestion after cooking. An in situ infrared microspectroscopy approach was developed to detect the effects of heat and acid treatments on protein structure separately. Infrared spectra were obtained from meat samples treated with heat and/or acid, and wavenumbers accounting independently for the treatments were extracted by principal component regression. Extreme-acid treatment (pHinitial 2.0) was well predicted (0.5% error) by a simple ratio of as-observed spectral intensities at 1211 and 1396 cm−1, reflecting a perturbation in the vibration of amino acid residues (phenylalanine, tyrosine and aspartic acid) by protein unfolding and protonation. Using the imaging mode of an IR microscope, meat protein acidification was evidenced with high spatial resolution. The heat effect was well discriminated from the acid effect by the ratio of as-observed intensities at 1666 and 1697 cm−1 (0.9% error), indicating content of aggregated β-sheets relative to α-helix structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.