Abstract
The biofilter potential of the freshwater bivalve, Lamellidens marginalis was examined in cage experiments conducted in a river canal (Ichhapore, 24-Parganas, West Bengal, India) receiving industrial effluents from steel and metal factories as well as from an ordinance factory. Cadmium is one of the major contaminants in this river canal. Lamellidens collected from pollution free natural ponds, were sorted into three size groups (large: 59±3.2 g, 10±2.3 cm; medium: 30±2 g, 6±1.7 cm and small: 13±1.5 g, 4±1.2 cm) were held in cages at three different sites along a cadmium concentration gradient. Concentrations of cadmium were measured from water, sediment and different tissues of Lamellidens at weekly intervals using atomic absorption spectrophotometric methods. Cadmium uptake by Lamellidens in all media were highly concentration dependent in both summer and winter months. For all three size groups, cadmium uptake was maximum in the gills at the beginning of experiment, and liver at the later phase. Cadmium uptake was maximum in the small bivalves and minimum in the large bivalves groups. Cadmium uptake was 11–67% higher during summer than during the monsoon season for all tissues and size groups. Estimation of concentration factor revealed that tissues were saturated with cadmium during the 13–14th week after Lamellidens introduction during summer, but remained unsaturated during the monsoon season. It is concluded that Lamellidens might be considered as an efficient biofilter for reclamation of aquatic environment having sub-lethal concentrations of cadmium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.