Abstract

Much of the information about the size and shape of aerosols forming haze and the cloud layer of Venus is obtained from indirect inferences from nephelometers on probes and from the analysis of the variation of polarization with the phase angle and the glory feature from images of Venus. The microscopic imaging of Venus' aerosols has recently been advocated. Direct measurements from a fluorescence microscope can provide information on the morphology, density, and biochemical characteristics of the particles; thus, fluorescence microscopy is attractive for in situ particle characterization of the Venus cloud layer. Fluorescence imaging of Venus cloud particles presents several challenges owing to the sulfuric acid composition and corrosive effects. In this article, we identify the challenges and describe our approach to overcoming them for a fluorescence microscope based on an in situ biochemical and physical characterization instrument for use in the clouds of Venus from a suitable aerial platform. We report that pH adjustment using alkali was effective for obtaining fluorescence images and that fluorescence attenuation was observed after the adjustment, even when the acidophile suspension in concentrated sulfuric acid was used as a sample.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.