Abstract

The goal of this study was to develop an in situ bioassay with Eisenia andrei, deploying it in several locations of an abandoned mining area. Our objectives were two-fold: (i) we intended to validate the in situ soil bioassay procedures, while (ii) providing ecologically relevant data to complement the ongoing risk evaluation based on laboratorial assays. To promote cost- and time-effectiveness, the in situ exposure was short (48 h) and the endpoints analysed included oxidative stress biomarkers and metal content in soil and organisms. The bioassay was carried out under different experimental conditions, simulating local (natural soil) vs. control conditions (LUFA soil), and irrigation with artificial rainwater vs. irrigation with diluted acidic effluent. Variation in the data was mostly due to soil type, rather than irrigation water, and substantial spatial heterogeneity was observed. Oxidative stress biomarkers did not fully work as sensitive parameters to environmental contamination. Earthworm metal burdens suggested a potential concern in terms of bioaccumulation of some metallic elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.