Abstract

A 5-fold twin is usually observed in nanostructured metals after mechanical tests and/or annealing treatment. However, the formation mechanism of a 5-fold twin has not been fully elaborated, due to the lack of direct time-resolved atomic-scale observation. Here, by using in situ nanomechanical testing combined with atomistic simulations, we show that sequential twinning slip in varying slip systems and decomposition of high-energy grain boundaries account for the 5-fold twin formation in a nanoscale gold single crystal under bending as well as the reversible formation and dissolution of a 5-fold twin in a nanocrystal with a preexisting twin under tension and shearing. Moreover, we find that the complex stress state in the neck area results in the breakdown of Schmid's law, causing 5-fold twin formation in a gold nanocrystal with a twin boundary parallel to the loading direction. These findings enrich our understanding of the formation process of high-order twin structures in nanostructured metals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call