Abstract

To analyze the fundamental mechanisms active in the formation of three-dimensional (3D) arrays of cells and dendrites under diffusive growth conditions, in situ monitoring of series of experiments on transparent model alloy was carried out in the DECLIC Directional Solidification Insert on-board the International Space Station, offering a very unique opportunity to in situ characterize the whole development of the microstructure in extended 3D patterns. Some of the most striking results are here presented. Microgravity environment provided the conditions to get benchmark data in diffusive transport conditions; the comparison with ground experiments will be performed to highlight the influence of convection in terms of primary spacing distributions. Oscillatory breathing modes observed for the very first time in bulk samples will also be described with the support of 3D-phase-field simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.