Abstract
Simultaneous renewable energy generation is an imperative part of sustainable hazardous waste management. Therefore, the present work explicates the co-pyrolysis of rice stubble (RS) waste biomass and spent motor oil (SMO) to upgrade the obtained bio-oil. Moreover, two different modes, namely, in-situ and ex-situ, were implemented to analyze the effect of physical inhibition. Monothetic analysis approach was followed to determine optimum process conditions. A substantial increment of ∼ 85% was observed in bio-oil yield for RS: SMO (1:1) in-situ operation whilst the only RS biomass pyrolysis. Moreover, the HHV increased by ∼ 2.15 times after co-pyrolysis with a considerable reduction (62.70%) in water content. Consequently, the paraffin content increased to 79.14 vol% with an iso-paraffin index of 0.285. Subsequently, a possible reaction mechanism is also proposed to evaluate results comprehensively. Altogether, the co-pyrolysis of these feedstocks resulted in improved aliphatic content and reduced oxygenates, encouraging its adequacy as an alternate fuel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.