Abstract

Metabolic labeling with the nucleoside analog 5-ethynyl-2'-deoxyuridine (EdU) enables the selective labeling of DNA synthesis in live cells. Newly synthesized EdU-containing DNA can be covalently modified after extraction or in fixed cells using copper-catalyzed azide-alkyne cycloaddition "click chemistry" reactions, enabling bioconjugation to various substrates including fluorophores for imaging studies. While often used to study nuclear DNA replication, EdU labeling can also be leveraged to detect the synthesis of organellar DNA in the cytoplasm of Eukaryotic cells. In this chapter, we outline methods for the application of EdU labeling to the study of mitochondrial genome synthesis in fixed cultured human cells, using fluorescent labeling and superresolution light microscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.