Abstract

We report on rapid in situ analysis of liquid metal melts under reduced ambient pressure by laser-induced breakdown spectroscopy (LIBS) using a transportable system. LIBS denotes a method in which characteristic optical emission line intensities of excited species in laser-generated plasma plumes are used for a quantitative chemical analysis of target materials. It is a fast, noncontact method that can be carried out under various atmospheric conditions, allowing large working distances between the sample under investigation and the detection system. For these reasons, LIBS is applicable in particular for process control in metallurgy under reduced ambient pressure. This was demonstrated for two types of vacuum devices under production conditions at a steel mill. The results of these experiments, including calibration curves for Cr, Ni, and Mg in liquid steel, are presented. The influence of variations in the ambient pressure on the results of the LIBS analysis is discussed within the frame of a generalized shock-wave model for the expansion of the laser-induced plasma plume.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call