Abstract

The chemical composition of the Cu-mining-related acidic ground water (pH ∼ 3.5 to near neutral) in Pinal Creek Basin, Arizona has been monitored since 1980. In-situ experiments are planned using alluvial sediments placed in the ground-water flow path to measure changes in mineral and chemical composition and changes in dissolution rates of subsurface alluvial sediments. The test results should help refine developed models of predicted chemical changes in ground-water composition and models of streamflow. For the preliminary test, sediment from the depth of the well screen of a newly drilled well was installed in three wells, the source well (pH 4.96) and two up-gradient wells (pHs 4.27 and 4.00). The sediment was placed in woven macrofilters, fastened in series to polyvinyl chloride (PVC) pipes, and hung at the screened level of each well. After interacting with the slowly moving ground water for 48 days, the test sediments were removed for analysis. There was no evidence that any of the materials used were biologically or chemically degraded or that the porosity of the filters was diminished by ferric hydroxide precipitation. These materials included 21-μm-pore (21PEMF) and 67-μm-pore polyester and the 174-μm-pore fluorocarbon Spectra/mesh macrofilters containing the in-situ sediment, the polypropylene (PP) macrofilter support structures, and the Nylon (NY) monofilament line used to attach the samples to the PVC pipe. Based on chemical and mineral composition and on particle-size distribution of the sediment before and after ground-water exposure, the 21PEMF macrofilter was chosen as the most suitable macrofilter for the long-term in-situ experiment. Tests also showed that the PP support structures and the NY monofilament line were sufficiently durable for this experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.