Abstract
Atomic force microscopy (AFM) is a powerful tool to observe polymer chains at the molecular level. In this study, we show that the movements of isolated linear polymer chains in a precursor film of a droplet of an oligomer spreading on a substrate could be visualized in situ at the molecular level by AFM for the first time. The system was an isotactic poly(methyl methacrylate) (it-PMMA) solubilized in an oligo(MMA) matrix (it-PMMA/oligo(MMA) = 1/10,000 w/w) spreading on mica under high humidity. Because of the limited resolution of the AFM instrument, condensed linear polymer chains could not be visualized, but a small amount of it-PMMA chains that were solubilized as isolated chains in the oligo(MMA) matrix could be visualized in the precursor film, the contrast of which came from a large difference in glass transition temperature (Tg) of it-PMMA and oligo(MMA). The it-PMMA chains in the precursor film spread in the radial direction of the droplet with vigorously changing chain conformations. The spreading rate of it-PMMA chains under 72% relative humidity was ∼1/30 of the spreading rate of the oligo(MMA) matrix, which was estimated based on the decrease in the volume of the macroscopic droplet. The spreading of the it-PMMA chains and droplet strongly depended on humidity and was suppressed with the decrease in humidity, most likely because of the increase in friction with the substrate. The difference in the spreading rate of it-PMMA and oligo(MMA) further increased under low humidity. The dynamic molecular information of a precursor film by AFM should help to elucidate the wetting dynamics on a substrate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.