Abstract

Background and aimsThe major apolipoproteins of plasma lipoproteins play vital roles in the structural integrity and physiological functions of lipoproteins. More than ten structural models of apolipoprotein A-I (apoA-I), the major apolipoprotein of high-density lipoprotein (HDL), have been developed successively. In these models, apoA-I was supposed to organize in a ring-shaped form. To date, however, there is no direct evidence under physiological condition. MethodsHere, atomic force microscopy (AFM) was used to in situ visualize the organization of apoA-I, which was exposed via depletion of the lipid component of plasma HDL pre-immobilized on functionalized mica sheets. ResultsFor the first time, the ring-shaped coarse structure and three detailed structures (crescent-shaped, gapped “O”-shaped, and parentheses-shaped structures, respectively) of apoA-I in plasma HDL, which have the ability of binding scavenger receptors, were directly observed and quantitatively measured by AFM. The three detailed structures probably represent the different extents to which the lipid component of HDL was depleted. Data on lipid depletion of HDL may provide clues to understand lipid insertion of HDL. ConclusionsThese data provide important information for the understanding of the structure/maturation of plasma HDL. Moreover, they suggest a powerful method for directly visualizing the major apolipoproteins of plasma lipoproteins or the protein component of lipoprotein-like lipid-protein complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.