Abstract

Slot-die coating is recognized as the most compatible method for the roll-to-roll (R2R) processing of large-area flexible organic solar cells (OSCs). However, the photovoltaic performance of large-area flexible OSC lags significantly behind that of traditional spin-coating devices. In this work, two acceptors, Qx-1 and Qx-2, show quite different film-formation kinetics in the slot-die coating process. In situ absorption spectroscopy indicates that the excessive crystallinity of Qx-2 provides early phase separation and early aggregation, resulting in oversized crystal domains. Consequently, the PM6:Qx-1-based 1cm2 flexible device exhibits an excellent power conversion efficiency (PCE) of 13.70%, which is the best performance among the slot-die-coated flexible devices; in contrast, the PM6:Qx-2 blend shows a pretty poor efficiency, which is lower than 1%. Moreover, the 30 cm2 modules based on PM6:Qx-1, containing six 5 cm2 sub-cells, exhibit a PCE of 12.20%. After being stored in a glove box for over 6000h, the PCE remains at 103% of its initial values, indicating excellent shelf stability. Therefore, these results show a promising future strategy for the upscaling fabrication of flexible large-area OSCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call