Abstract

In-situ layerwise imaging measurement of laser powder bed fusion (LPBF) provides a wealth of forming and defect data which enables monitoring of components quality and powder bed homogeneity. Using high-resolution camera layerwise imaging and image processing algorithms to monitor fusion area and powder bed geometric defects has been studied by many researchers, which successfully monitored the contours of components and evaluated their accuracy. However, research for the methods of in-situ 3D contour measurement or component edge warping identification is rare. In this study, a 3D contour measurement method combining gray intensity and phase difference is proposed, and its accuracy is verified by designed experiments. The results show that the high-precision of the 3D contours can be achieved by the constructed energy minimization function. This method can detect the deviations of common geometric features as well as warpage at LPBF component edges, and provides fundamental data for in-situ quality monitoring tools.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call