Abstract
A novel configuration of hybrid solar cells fabricated using TiO2 and in situ polymerization of poly(3-hexylthiophene), or P3HT, on the surface of TiO2 is reported. Comparison of UV–Vis absorption and current/voltage (I/V) characteristics of devices with or without in situ polymerized P3HT layer were discussed, and the surface morphology of TiO2/in situ polymerized P3HT film was investigated by AFM in the contact mode. The short-circuit current density and energy conversion efficiencies of device with in situ polymerized P3HT layer were higher by 6 times and 3 times compared to that of device without the in situ polymerized P3HT layer. By adding poly (ethylene dioxythiophene)-poly (styrene sulfonic acid)(PEDOT-PSS) layer under the top contact, device showed a short-circuit current density of 1.27 mA cm−2, an open-circuit voltage of 0.52 V, a fill factor of 0.24, and a energy conversion efficiency of 0.16% at AM 1.5 solar illumination (100 mW cm−2).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.