Abstract
RNA-Sequencing (RNA-Seq) can identify gene fusions in tumors, but not all these fusions have functional consequences. Using multiple data bases, we have performed an in silico analysis of fusions detected by RNA-Seq in tumor samples from 139 newly diagnosed glioblastoma patients to identify in-frame fusions with predictable oncogenic potential. Among 61 samples with fusions, there were 103 different fusions, involving 167 different genes, including 20 known oncogenes or tumor suppressor genes (TSGs), 16 associated with cancer but not oncogenes or TSGs, and 32 not associated with cancer but previously shown to be involved in fusions in gliomas. After selecting in-frame fusions able to produce a protein product and running Oncofuse, we identified 30 fusions with predictable oncogenic potential and classified them into four non-overlapping categories: six previously described in cancer; six involving an oncogene or TSG; four predicted by Oncofuse to have oncogenic potential; and 14 other in-frame fusions. Only 24 patients harbored one or more of these 30 fusions, and only two fusions were present in more than one patient: FGFR3::TACC3 and EGFR::SEPTIN14. This in silico study provides a good starting point for the identification of gene fusions with functional consequences in the pathogenesis or treatment of glioblastoma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.