Abstract

ObjectivesThe human N-myc downstream-regulated gene 2 (hNDRG2) protein is mainly responsible for Alzheimer's disease (AD). It has 371 amino acid residues in their sequence. The 3dimensional (3D) structure of the complete sequence of this protein is still unknown. The present research computationally emphases to predict the 3D structure for the complete sequence of hNDRG2 protein and efficiency of this protein against AD was evaluated with synthetic and natural compounds using docking studies. Molecular dynamics (MD) study was performed to find the stability of the best interacted molecule. MethodsThe hNDRG2 protein was modeled using Modeller9v10. The lead compounds were retrieved from PubChem database. Docking studies were performed using AutoDock4.2. MD study was done by Macro model. ResultsThe modeled hNDRG2 protein was validated using Ramachandran plot and it showed the value of 90.8% in the most favored regions. From the results of docking studies, the interaction of modeled protein with synthetic tacrine showed the binding energy value of −4.44 kcal/mol and the interactions with 15 phytocompounds of Rosmarinus officinalis, a natural compound (+)-borneol showed the best binding energy value of −4.64 kcal/mol. The result of MD study determined that, the complex of modeled protein with (+)-borneol was stable at 2.2 ns. ConclusionsIn the above study, when the interaction of phytocompounds compared with synthetic tacrine, the natural compound (+)-borneol have showed good interaction with modeled protein and it is suggested to treat AD for avoiding the side effects of synthetic drugs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.