Abstract

Introduction: The study investigated the molecular effects of human exposure to commonly used pesticides in Nigeria. Methods: Utilizing computational methods like clustering analysis, toxicokinetic predictions, molecular docking, and molecular dynamic (MD) simulation, various health impacts were identified. Results and Discussion: The results revealed significant gastrointestinal absorption, P-glycoprotein bypass, blood-brain barrier penetration, and cytochrome P450 inhibition for certain pesticide agents. Notably, oxathiapiprolin showed hepatotoxicity, propanil exhibited drug-induced liver injury (DILI), and 2,4-dichloro-phenoxyacetic acid demonstrated carcinogenicity. Respiratory toxicity was predicted for most pesticides, except propanil and N-(2,6-diethylphenyl) acetamide. Molecular targets were identified, such as bifenthrin targeting programmed cell death 1 ligand 1 and Atrazine targeting potassium voltage-gated channel subfamily H member 3. Binding affinities were computed, with oxathiapiprolin showing -6.526 kcal/mol with short transient receptor potential channel 7. Molecular dynamic simulations indicated significant binding energy changes over time. Atrazine's binding with potassium voltage-gated channel subfamily H member 3 exhibited a total binding energy ΔGbind of -39.410 kcal/mol and -49.135 kcal/mol at 0 ns and 100 ns, respectively. Oxathiapiprolin's binding with short transient receptor potential channel 7 showed ΔGbind of -53.481 kcal/mol and -44.122 kcal/mol at 0 ns and 100 ns. Conclusion: This study suggests potential hepatotoxicity and carcinogenicity of certain pesticides, emphasizing the need for environmental monitoring and stringent regulations to safeguard public health.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call