Abstract

Non-small cell lung cancer (NSCLC) accounts for 85% of all lung cancers. In spite of great advances, treatment of the disease is a medical challenge. Epidermal-growth factor receptor (EGFR) has been taken as a promising cell surface target to develop anti-NSCLC therapies. The main bottleneck to attain clinical efficacy with current EGFR tyrosine kinase inhibitors (EGFR-TKIs) is the rapid spread of oncogenic mutations. Numerous efforts have been made for the synthesis of diverse EGFR-TKIs against resistance-conferring mutations. One of the best strategies to design potent agents would be to explore existing anti-NSCLC drugs at the nonclinical development stage and prioritize privileged structural patterns. Within current study, conformational stability of clinically frequent EGFR mutants (G719S, T790M, L858R and a double mutant form L858R/T790M) were validated via DynaMut and missense3D computational servers. Subsequently, structure activity relationship (SAR) and scaffold similarity inquiry were used to rationally propose a few erlotinib analogues. Intended molecules were subjected to molecular docking and top-scored binders were further analyzed through 50-ns all atom molecular dynamics (MD) simulations to infer the dynamic behavior. The aim was to offer potential binders to overwhelm clinically frequent EGFR-TK mutants. The linear interaction energy (LIE) method was applied to compute the binding free energies between EGFR and intended ligands. For this purpose, MD-based conformational sampling of ligand-enzyme complexes and ligand-water associations were used to acquire thermodynamic energy averages. Though mechanistic details are to be explored, results of the current study identify synthetically accessible quinazoline small molecules with potential affinity toward frequent EGFR-TK mutants. Communicated by Ramaswamy H. Sarma

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.