Abstract

Staphylococcus saprophyticus is a uropathogenic bacteria responsible for acute urinary tract infections (UTIs) mainly in young female patients. Patients suffering from urinary catheterization, pregnant patients, the elderly as well as those with nosocomial UTIs are at greater risk of the colonizing S. saprophyticus infection. The causative factors include benign prostatic hyperplasia, indwelling catheter, neurogenic bladder, pregnancy, and history of frequent UTIs. Recent findings have exhibited that S. saprophyticus is resistant to several antimicrobial agents. Moreover, there is a global concern regarding the increasing level of antimicrobial resistance, which leads to treatment failure and reduced effectiveness of broad-spectrum antimicrobials. Therefore, a novel approach is being utilized to combat resistant microbes since the past few years. Subtractive proteome analysis has been performed with the entire proteome of S. saprophyticus strain American Type Culture Collection (ATCC) 15305 using several bioinformatics servers and software. The proteins that were non-homologous to humans and bacteria were identified for metabolic pathway analysis. Only four cytoplasmic proteins were found possessing the potential of novel drug target candidates. The development of innovative therapeutic agents by targeting the inhibition of any essential proteins may disrupt the metabolic pathways specific to the pathogen, thus causing destruction as well as eradication of the pathogen from a particular host. The identified targets can facilitate in designing novel and potent drugs against S. saprophyticus strain ATCC 15305.

Highlights

  • Urinary tract infections (UTIs) are the most common bacterial infection and a lot of women suffer from this infection at least once in a lifetime

  • The entire proteome of S. saprophyticus strain American Type Culture Collection (ATCC) 15305 was studied by using the approach of subtractive proteomics for identifying potential drug targets

  • Cluster Database at High with Tolerance (CD-HIT) is an extensively used software for clustering of biological sequences, which decreases the redundancy of protein sequences and improves the performance of other sequence analyses [18]

Read more

Summary

Introduction

Urinary tract infections (UTIs) are the most common bacterial infection and a lot of women suffer from this infection at least once in a lifetime. Until the 1960s, coagulase-negative staphylococci were considered urinary pollutants. In 1962, the isolation of coagulase-negative staphylococci was reported by Torres Pereira. It carries 51 urine antigens of women with acute urinary tract infections [1]. Many studies backed this idea in the following years [2]. The organism ended up being part of subgroup 3 of Micrococcus. Later it was reclassified as S. saprophyticus.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.