Abstract

Hydroxylated polychlorinated biphenyls (HO-PCBs), major metabolites of PCBs, may have the potential to disrupt androgen hormone homeostasis. However, there is a lack of systematic investigation into the intermolecular interaction mechanism between HO-PCBs and the androgen receptor (AR). In this study, the combination of three-dimensional quantitative structure–activity relationship (3D–QSAR), molecular docking, and molecular dynamics (MD) simulations was performed to elucidate structural characteristics that influence the anti-androgen activity of HO-PCBs, and to provide a better understanding of the binding modes between HO-PCBs and AR. A predictive comparative molecular field analysis (CoMFA) model was developed with good robustness and predictive ability. Graphical interpretation of the model provided some insights into the structural features that affect the anti-androgen activity of HO-PCBs. The hydrogen bond interaction with Gln711, and hydrophobic interactions with residues in the hydrophobic pocket played important roles in the binding of ligand with receptor. These results are expected to be beneficial to predict anti-androgen activities of other HO-PCBs and provided possible clues for further elucidation of the binding mechanism of HO-PCBs with AR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.