Abstract

Among the 22 Fanconi anemia (FA) reported genes, 90% of mutational spectra were found in three genes, namely FANCA (64%), FANCC (12%) and FANCG (8%). Therefore, this study aimed to identify the high-risk deleterious variants in three selected genes (FANCA, FANCC, and FANCG) through various computational approaches. The missense variant datasets retrieved from the UCSC genome browser were analyzed for their pathogenicity, stability, and phylogenetic conservancy. A total of 23 alterations, of which 16 in FANCA, 6 in FANCC and one variant in FANCG, were found to be highly deleterious. The native and mutant structures were generated, which demonstrated a profound impact on the respective proteins. Besides, their pathway analysis predicted many other pathways in addition to the Fanconi anemia pathway, homologous recombination, and mismatch repair pathways. Hence, this is the first comprehensive study that can be useful for understanding the genetic signatures in the development of FA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call