Abstract

The formation of amyloids due to the self-assembly of intrinsically disordered proteins or peptides is a hallmark for different neurodegenerative diseases. For example, amyloids formed by the amyloid beta (Aβ) peptides are responsible for the most devastating neuropathological disease, namely, Alzheimer's disease, while aggregation of α-synuclein peptides causes the etiology of another neuropathological disease, Parkinson's disease. Characterization of the intermediates and the final amyloid formed during the aggregation process is, therefore, crucial for microscopic understanding of the origin behind such diseases, as well as for the development of proper therapeutics to combat those. However, most of the research activities reported in this area have been directed toward examining the early stages of the aggregation process, including probing the conformational characteristics of the responsible protein/peptide in the monomeric state or in small oligomeric forms. This is because the small soluble oligomers have been found to be more deleterious than the final insoluble amyloids. This review discusses some of the recent findings obtained from our simulation studies on Aβ and α-synuclein monomers and small preformed Aβ aggregates. A molecular-level insight of the aggregation process with a special emphasis on the role of water in inducing the aggregation process has been provided.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call