Abstract

This study aimed to explore the temperature-related pathogenic mechanism of Ralstonia solanacearum infection in tomato (Lycopersicon esculentum Mill.). Based on bioinformatics analysis of microarray dataset (GSE33657), the co-differentially expressed genes (co-DEGs) ribonucleic acids were identified in R. solanacearum GMI1000-infected L. esculentum Mill., which was cultured at 20°C and 28°C, in rich medium containing casamino acids, peptone, and glucose (CPG) and planta. In total, 63 upregulated co-DEGs and 57 downregulated co-DEGs were identified between 20°C and 28°C in the CPG and planta groups. Protein-protein interaction network revealed 70 protein interaction pairs and 59 nodes. Notably, iolG, iolE, ioll and RSc1248 played critical roles in the network. The subcellular localization and functional annotation showed that the increased expressed proteins were mainly localized in the inner cell membrane, while those with decreased expression were localized in the cytoplasm. Furthermore, these proteins were mainly enriched in regulation of DNA-templated transcription. RSc1154 and RhlE were predicted to be temperature-related pathogenic genes for R. solanacearum in tomato. Furthermore, phosphorelay signal transduction system function might play an important role in R. solanacearum infection. The candidate genes were verified by quantitative real-time PCR, and the results were consistent with gene expression profile.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call