Abstract

The SARS-CoV-2 proteases Mpro and PLpro are important targets for the development of antivirals against COVID-19. The functional group 1,2,4-thiadiazole has been indicated to inhibit cysteinyl proteases, such as papain and cathepsins. Of note, the 1,2,4-thiadiazole moiety is found in a new class of cephalosporin FDA-approved antibiotics: ceftaroline fosamil, ceftobiprole, and ceftobiprole medocaril. Here we investigated the interaction of these new antibiotics and their main metabolites with the SARS-CoV-2 proteases by molecular docking, molecular dynamics (MD), and density functional theory (DFT) calculations. Our results indicated the PLpro enzyme as a better in silico target for the new antibacterial cephalosporins. The results with ceftaroline fosamil and the dephosphorylate metabolite compounds should be tested as potential inhibitor of PLpro, Mpro, and SARS-CoV-2 replication in vitro. In addition, the data here reported can help in the design of new potential drugs against COVID-19 by exploiting the S atom reactivity in the 1,2,4-thiadiazole moiety.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.