Abstract

Fatty acid (FA) binding proteins are small intracellular proteins whose members exhibit great diversity and low similarity at the primary structure level, but a highly conserved three-dimensional structure. Characterised by a high-affinity non-covalent binding of hydrophobic ligands, these proteins have a molecular mass of 14–15 kDa with a characteristic β-barrel structure. Members of this family have been identified along the zoological scale, with Platyhelminthes being the more primitive organisms where they have been reported. Two FA binding proteins (FABPs), EgFABP1 and EgFABP2, with 88% similarity have been identified in Echinococcus granulosus. In an effort to understand why two such similar proteins are expressed by this organism, we performed an in silico analysis of the binding capabilities of both proteins. The crystallographic structure of EgFABP1 was utilised as a template to model EgFABP2, and both were docked against palmitate, oleate, linoleate and arachidonate. The docked structures were submitted to 4 ns molecular dynamics simulations, and their protein–ligand interaction energies were measured. The collected data demonstrated that linoleate and arachidonate had the higher interaction energies when bound to EgFABP1 and that palmitate and linoleate had the higher interaction energies when bound to EgFABP2. External and internal binding surfaces were analysed, showing differences at both levels. Internal surface compositions suggested that both proteins could have preferences for certain FAs. Comparisons of the holo and apo forms of each protein indicated that the ligand imposed subtle, but specific modifications that could trigger surface signals. The differences found between the proteins under study suggest that they could have functional uniqueness in the parasite's metabolism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.