Abstract

BackgrondIn silico studies are essential techniques in the modern medicinal chemistry. QSAR modeling and molecular docking are important techniques in both drug discovery and development and have been successfully deployed in the field of medicinal chemistry for the discovery, design, and development of many drug candidates. These techniques were used in this work to come up with a model that relate 2,5-disubstituted furans with their antiplasmodium activities for the development of more active antimalarial drugs.ResultsPredictive and robust QSAR model was generated using Genetic Function Algorithm. The model was statistically validated to have internal and external squared correlation coefficient, R2 of 0.982 and 0.735 respectively; predictive squared correlation coefficient, R2pred of 0.599; adjusted squared correlation coefficient, Radj of 0.974; and leave-one-out cross-validation coefficient, Q2cv of 0.966. It was found out that the antiplasmodium activities of 2,5-disubstituted furans relied on the parameters: GATS5c, minsCl RDF130m, RDF75p, and RDF115s descriptors. All the descriptors except minsCl influenced the antiplasmodium activities of the compounds negatively. That is, their increase decreases the activities of the furans and vice versa. The docking study revealed that most of the furans bind more tightly to Plasmodium falciparum lactate dehydrogenase (pfLDH) than chloroquine, but the enzyme may not be their major target.ConclusionInsight into the relationship between 2,5-disubstituted furans and their antiplasmodium activities has been revealed from the results of this work. Therefore, this could serve as a model for designing novel 2,5-disubstituted furans as potential antimalarial drugs with better activities.

Highlights

  • World Health Organization reported 228 million cases and 405,000 deaths worldwide from malaria disease in 2018, where children (< 5 years) accounted for 272,000 deaths

  • World Health Organization (WHO) recommends the use of artemisinin-based combination therapies (ACTs) as firstline treatment for P. falciparum (Martinelli et al, 2008)

  • Resistance to ACTs is increasing in South East Asia Region, the Greater Mekong Subregion (GMS), and Western Pacific Region (World Health Organization, 2019)

Read more

Summary

Introduction

World Health Organization reported 228 million cases and 405,000 deaths worldwide from malaria disease in 2018, where children (< 5 years) accounted for 272,000 deaths. This made it one of the most lives threatening disease prevalent in Africa, where 93% and 94% of the 2018 global cases and deaths respectively came from the region (World Health Organization, 2019). Resistance to ACTs is increasing in South East Asia Region, the Greater Mekong Subregion (GMS), and Western Pacific Region (World Health Organization, 2019). This could spread to other regions of the world, the need for highly potent antimalaria with low propensity to resistance

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.