Abstract

Malaria caused by Plasmodium falciparum is the most deadly and a major health issue worldwide. In spite of several control programs, there hasn’t been much improvement in keeping the disease under control. The appearance of drug resistant strains of Plasmodium in addition to insecticide resistance of the Anopheles vector has been a hurdle. Therefore, it is highly desirable to identify new potential candidates that can be targeted for therapeutic intervention. The present study identifies AMR1, a highly conserved essential protein of Plasmodium falciparum, as a potential candidate for vaccine development. AMR1 is an exposed surface protein with high antigenic property and conservancy among other species of the parasite. Reverse vaccinology approach (RV) is adopted to determine the best epitopes of AMR1 protein. The protein was further evaluated for several important physiochemical parameters. The study revealed the 3D structure of AMR1, as well as the best B cell and helper T-cell epitopes of the protein. These resulted epitopes might be of great importance in the development of an effective vaccine to combat the deadly disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.