Abstract

The emergence of Coronavirus disease (COVID-19) has been declared a pandemic and made a medical emergency worldwide. Various attempts have been made, including optimizing effective treatments against the disease or developing a vaccine. Since the SARS-CoV-2 protease crystal structure has been discovered, searching for its inhibitors by in silico technique becomes possible. This study aims to virtually screen the potential of phytoconstituents from the Begonia genus as 3Cl pro-SARS-CoV- 2 inhibitors, based on its crucial role in viral replication, hence making these proteases "promising" for the anti-SARS-CoV-2 target. In silico screening was carried out by molecular docking on the web-based program DockThor and validated by a retrospective method. Predictive binding affinity (Dock Score) was used for scoring the compounds. Further molecular dynamics on Desmond was performed to assess the complex stability. Virtual screening protocol was valid with the area under curve value 0.913. Molecular docking revealed only β-sitosterol- 3-O-β-D-glucopyranoside with a lower docking score of - 9.712 kcal/mol than positive control of indinavir. The molecular dynamic study showed that the compound was stable for the first 30 ns simulations time with Root Mean Square Deviation <3 Å, despite minor fluctuations observed at the end of simulation times. Root Mean Square Fluctuation of catalytic sites HIS41 and CYS145 was 0.756 Å and 0.773 Å, respectively. This result suggests that β-sitosterol-3-O-β-Dglucopyranoside might be a prospective metabolite compound that can be developed as anti-SARS-CoV-2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.