Abstract

Protein tyrosine kinase 6 (PTK6), also known as breast tumor kinase (BRK), serves as a non-receptor intracellular tyrosine kinase within the Src kinases family. Structurally resembling other Src kinases, PTK6 possesses an Src homology 3 (SH3) domain, an Src homology 2 (SH2) domain, and a tyrosine kinase domain (SH1). While considerable efforts have been dedicated to designing PTK6 inhibitors targeting the SH1 domain, which is responsible for kinase activity in various pathways, it has been observed that solely inhibiting the SH1 domain does not effectively suppress PTK6 activity. Subsequent investigations have revealed the involvement of SH2 and SH3 domains in intramolecular and substrate binding interactions, which are crucial for PTK6 function. Consequently, the identification of PTK6 inhibitors targeting not only the SH1 domain but also the SH2 and SH3 domains becomes imperative. Through an in silico structural-based virtual screening approach, incorporating drug repurposing and a consensus docking approach, we have successfully identified four potential ligands capable of concurrently inhibiting the tyrosine kinase domain and SH2/SH3 domains of PT6K simultaneously. This finding suggests potential pathways for therapeutic interventions in PTK6 inhibition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call