Abstract

Delta-opioid receptor protein (OPRD1) is one of the potential targets for treating pain. The presently available opioid agonists are known to cause unnecessary side effects. To discover a novel opioid agonist, our research group has synthesized a chimeric peptide MCRT and proved its potential activity through in vivo analysis. Non-synonymous SNPs (nsSNPs) missense mutations affect the functionality and stability of proteins leading to diseases. The current research was focused on understanding the role of MCRT in restoring the binding tendency of OPRD1 nsSNPs missense mutations on dynamic nature in comparison with Deltorphin-II and morphiceptin. The deleterious effects of nsSNPs were analyzed using various bioinformatics tools for predicting structural, functional, and oncogenic influence. The shortlisted nine nsSNPs were predicted for allergic reactions, domain changes, post-translation modification, multiple sequence alignment, secondary structure, molecular dynamic simulation (MDS), and peptide docking influence. Further, the docked complex of three shortlisted deleterious nsSNPs was analyzed using an MDS study, and the highly deleterious shortlisted nsSNP A149T was further analyzed for higher trajectory analysis. MCRT restored the binding tendency influence caused by nsSNPs on the dynamics of stability, functionality, binding affinity, secondary structure, residues connection, motion, and folding of OPRD1 protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call