Abstract
In silico screening of 10,143 metal-organic frameworks (MOFs) and 218 all-silica zeolites for adsorption-based and membrane-based He and N2 separation was performed. As a result of geometry-based prescreening, structures having zero accessible surface area (ASA) and pore limiting diameter (PLD) less than 3.75 Å were eliminated. So, both gases can be adsorbed and pass-through MOF and zeolite pores. The Grand canonical Monte Carlo (GCMC) and equilibrium molecular dynamics (EMD) methods were used to estimate the Henry's constants and self-diffusion coefficients at infinite dilution conditions, as well as the adsorption capacity of an equimolar mixture of helium and nitrogen at various pressures. Based on the obtained results, adsorption, diffusion and membrane selectivities as well as membrane permeabilities were calculated. The separation potential of zeolites and MOFs was evaluated in the vacuum and pressure swing adsorption processes. In the case of membrane-based separation, we focused on the screening of nitrogen-selective membranes. MOFs were demonstrated to be more efficient than zeolites for both adsorption-based and membrane-based separation. The analysis of structure-performance relationships for using these materials for adsorption-based and membrane-based separation of He and N2 made it possible to determine the ranges of structural parameters, such as pore-limiting diameter, largest cavity diameter, surface area, porosity, accessible surface area and pore volume corresponding to the most promising MOFs for each separation model discussed in this study. The top 10 most promising MOFs were determined for membrane-based, vacuum swing adsorption and pressure swing adsorption separation methods. The effect of the electrostatic interaction between the quadrupole moment of nitrogen molecules and MOF atoms on the main adsorption and diffusion characteristics was studied. The obtained results can be used as a guide for selection of frameworks for He/N2 separation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.