Abstract

Due to their potential application as an alternative to antibiotics, bacteriocins, which are ribosomally synthesized antimicrobial peptides produced by bacteria, have received much attention in recent years. To identify bacteriocins within marine bacteria, most of the studies employed a culture-based method, which is more time-consuming than the in silico approach. For that, the aim of this study was to identify potential bacteriocin gene clusters and their potential producers in 51 marine Bacillota (formerly Firmicutes) genomes, using BAGEL4, a bacteriocin genome mining tool. As a result, we found out that a majority of selected Bacillota (60.78%) are potential bacteriocin producers, and we identified 77 bacteriocin gene clusters, most of which belong to class I bacteriocins known as RiPPs (ribosomally synthesized and post-translationally modified peptides). The identified putative bacteriocin gene clusters are an attractive target for further in vitro research, such as the production of bacteriocins using a heterologous expression system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.