Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with yet no effective drug treatment; although several anticholinesterases are being used to offer relief from the symptoms of the disease. Recent studies have indicated that over-activation of cyclooxygenase-2 (COX-2) and matrix metalloproteinase-8 (MMP-8) may cause neuronal death in the brain of AD subjects, suggesting that inhibition of COX-2 and MMP-8 may be of therapeutic value in the management of AD. Therefore, it is important and rational to investigate new agents with anticholinesterase, COX-2 and MMP-8 inhibitory activities. In this study, molecular docking study was performed with earlier identified anticholinesterase alkaloids to search for compounds with high affinity for COX-2 and MMP-8. Molecular docking was done using Blind Docking Server while ligand-protein molecular interaction of compounds with remarkable inhibitory characteristics against COX-2 and MMP-8 were viewed with PyMOL. Alkaloids with high binding affinity and remarkable binding interaction with the target proteins were subjected to drug likeness investigation based on absorption-distribution-metabolism-excretion (ADME) properties using the Swiss online ADME web tool. Nine alkaloids (haloxysterol A, haloxysterol B, haloxysterol C, haloxysterol D, sarcodine, isosarcodine, axillaridine A, sarsalignenone and voacangine hydroxyindolenine) showed high affinities for both COX-2 and MMP-8. Thus, this in silico study identified 9 orally drugable, anticholinesterase alkaloids with COX-2 and MMP-8 multi-target activities that could be studied further as agents against AD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call