Abstract
Glycogen synthase kinase-3β (GSK3β) has been reported for its impact on multitude biological processes from cell proliferation to apoptosis. The increase in the ratio of active/inactive GSK3β is the major factor associated in the etiology of several psychiatric diseases, diabetes, muscle hypertrophy, neurodegenerative diseases, and some cancers. These findings made GSK3β a promising therapeutic target, and the interest in the discovery, synthesis of novel drugs to effectively attenuate its function with probably no side effects has been increasing in the chronology of GSK3β drug discovery. In the present study, we applied a combination of computational tools on a chemical library for the virtual discovery of their potency to inhibit GSK3β. The chemical library was screened against a set of filters at different levels. Finally, five compounds in the chemical library were found to potentially inhibit GSK3β with no toxic effects. Furthermore, binding mode analysis revealed that all the compounds bound to the ATP site and most of the hydrogen bonding interactions are conserved as in GSK3β structures deposited in PDB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.