Abstract

The Raman response of the YAlO3 (YAP) perovskite is modeled by means of periodic density functional theory. A number of different approximations to the exchange-correlation functional are benchmarked against the structural and spectroscopic data as imposing all-electron Gaussian-type basis sets. The WC1LYP functional was found to be superior, particularly outperforming other tested approaches in the prediction of the local structure of the AlO subunits, which reflects in the observed lattice-dynamics. The Raman response is further decomposed into the directional spectra, which are due to different components of the polarizability tensor, and confronted with the experimental Raman spectra, recorded in different scattering geometries of the single-crystalline film of YAP. The in silico lattice dynamics provides the unequivocal assignment of the observed bands with an excellent match to the experimental spectra, allowing for a complete analysis of the underlying phonon modes in terms of their energy, symmetry and the directional activity. The presented analysis serves as a high-quality reference, potentially useful in the future studies of other YAP materials, where Raman spectroscopy along with the X-Ray diffraction is the first method of choice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call