Abstract

The biological sensing interface on the active area of a piezo transducer is responsible for the sensitivity, specificity, reusability, and reproducibility of these devices. Among the approaches used to functionalize piezo transducers, mixed self-assembled monolayers (MSAMs) are one of the most successful, given that they allow the obtaining of semi-crystalline molecular arrays and the arrangement of a bioreceptor on the surface. But, to deploy MSAMs on a substrate effectively, one must optimize and characterize the structural ratio between them and the bioreceptor. In this paper, we developed a molecular model of the interaction between Bovine Serum Albumin (BSA) and MSAMs-functionalized gold substrates. First, we evaluated the conditions for the functionalization of the substrates and found that a 50:1 16-mercaptohexadecaonic acid (MHDA) to 11 mercapto-1-undecanol (MUA) ratio produced the best features on the surface. We also evaluated the specific conditions to immobilize BSA on MSAMs (using the afore-established ratio) via Atomic Force Microscopy (AFM), and then on a 10[Formula: see text]MHz quartz crystal microbalance (QCM), and with the data obtained we concluded that a structural ratio of 0.005 (MSAM/BSA) is obtained when 1[Formula: see text][Formula: see text]M MHDA and 200[Formula: see text][Formula: see text]g/mL BSA were used, provided the most suitable conditions for the functionalization of a piezo transducer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.