Abstract

Flexibility is an intrinsic essential feature of protein structures, directly linked to their functions. To this day, most of the prediction methods use the crystallographic data (namely B-factors) as the only indicator of protein's inner flexibility and predicts them as rigid or flexible.PredyFlexy stands differently from other approaches as it relies on the definition of protein flexibility (i) not only taken from crystallographic data, but also (ii) from Root Mean Square Fluctuation (RMSFs) observed in Molecular Dynamics simulations. It also uses a specific representation of protein structures, named Long Structural Prototypes (LSPs). From Position-Specific Scoring Matrix, the 120 LSPs are predicted with a good accuracy and directly used to predict (i) the protein flexibility in three categories (flexible, intermediate and rigid), (ii) the normalized B-factors, (iii) the normalized RMSFs, and (iv) a confidence index. Prediction accuracy among these three classes is equivalent to the best two class prediction methods, while the normalized B-factors and normalized RMSFs have a good correlation with experimental and in silico values. Thus, PredyFlexy is a unique approach, which is of major utility for the scientific community. It support parallelization features and can be run on a local cluster using multiple cores.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.