Abstract
Fluorosis is an endemic global problem causing male reproductive impairment. F mediates male reproductive toxicity in mice down-regulating 63 genes involved in diverse biological processes - apoptosis, cell cycle, cell signaling, chemotaxis, electron transport, glycolysis, oxidative stress, sperm capacitation and spermatogenesis. We predicted the miRNAs down-regulating these 63 genes using TargetScan, DIANA and MicroCosm. The prediction tools identified 3059 miRNAs targeting 63 genes. Of the predicted interactions, 11 miRNAs (mmu-miR-103, -107, -122, -188a, -199a-5p, -205, -340-5p, -345-3p, -452-5p, -499, -878-3p) were commonly found in the three tools utilized and seven miRNAs (miR-9-5p, miR-511-3p, miR-7b-5p, miR-30e-5p, miR-17-5p, miR-122-5p and miR-541-5p) targeting six genes (Traf3, Rock2, Rgs8, Atp1b2, Cacna2d1 and Aldoa) were already validated experimentally in mice. The miRNA-mRNA network of the predicted miRNAs with its respective targets revealed the complex interaction within a biological process leading to sperm dysfunction on exposure to F. Our findings not only suggest that the predicted miRs furnish evidence, but also have the potential to serve as non-invasive biomarkers on F-induced sperm dysfunction. Our data contribute towards elucidating the function of miRNAs in the fluoride induced infertility. miRNA molecular pathways in F intoxication will open new avenues on the use of antagomirs in recovering fertility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.