Abstract

BackgroundRNA gene expression of renal transplantation biopsies is commonly used to identify the immunological patterns of graft rejection. Mostly done with microarrays, seminal findings defined the patterns of gene sets associated with rejection and non-rejection kidney allograft diagnoses. To make gene expression more accessible, the Molecular Diagnostics Working Group of the Banff Foundation for Allograft Pathology and NanoString Technologies partnered to create the Banff Human Organ Transplant Panel (BHOT), a gene panel set of 770 genes as a surrogate for microarrays (~ 50,000 genes). The advantage of this platform is that gene expressions are quantifiable on formalin fixed and paraffin embedded archival tissue samples, making gene expression analyses more accessible. The purpose of this report is to test in silico the utility of the BHOT panel as a surrogate for microarrays on archival microarray data and test the performance of the modelled BHOT data.MethodsBHOT genes as a subset of genes from downloaded archival public microarray data on human renal allograft gene expression were analyzed and modelled by a variety of statistical methods.ResultsThree methods of parsing genes verify that the BHOT panel readily identifies renal rejection and non-rejection diagnoses using in silico statistical analyses of seminal archival databases. Multiple modelling algorithms show a highly variable pattern of misclassifications per sample, either between differently constructed principal components or between modelling algorithms. The misclassifications are related to the gene expression heterogeneity within a given diagnosis because clustering the data into 9 groups modelled with fewer misclassifications.ConclusionThis report supports using the Banff Human Organ Transplant Panel for gene expression of human renal allografts as a surrogate for microarrays on archival tissue. The data modelled satisfactorily with aggregate diagnoses although with limited per sample accuracy and, thereby, reflects and confirms the modelling complexity and the challenges of modelling gene expression as previously reported.

Highlights

  • RNA gene expression of renal transplantation biopsies is commonly used to identify the immunological patterns of graft rejection

  • To promote gene expression in renal transplants, the Molecular Diagnostic Working Group of the Banff Foundation for Allograft Pathology and NanoString Technologies partnered to create a subset of microarray genes, the Banff Human Organ Transplant (BHOT) panel to encourage more widespread usage of gene expression in allografts [21]

  • The purpose of this report is to test in silico if the Banff Human Organ Transplant Panel (BHOT) panel as a subset of microarray genes shows similar microarray expression patterns as archival microarray data [1,2,3,4,5,6,7,8,9, 22], with the caveat that some variation in patterns may occur in BHOT vs microarray expression

Read more

Summary

Introduction

RNA gene expression of renal transplantation biopsies is commonly used to identify the immunological patterns of graft rejection. To make gene expression more accessible, the Molecular Diagnostics Working Group of the Banff Foundation for Allograft Pathology and NanoString Technologies partnered to create the Banff Human Organ Transplant Panel (BHOT), a gene panel set of 770 genes as a surrogate for microarrays (~ 50,000 genes). The advantage of this platform is that gene expressions are quantifiable on formalin fixed and paraffin embedded archival tissue samples, making gene expression analyses more accessible. Modelling studies were performed to test how well the BHOT gene subset identifies the annotated diagnostic classes and, highlights the practical issues investigators will find when using classification of gene expression for clinical decision making

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.