Abstract

Dielectric elastomers (DEs) require balanced electric actuation performance and mechanical integrity under applied voltages. Incorporating high dielectric particles as fillers provides extensive design space to optimize concentration, morphology, and distribution for improved actuation performance and material modulus. This study presents an integrated framework combining finite element modeling (FEM) and deep learning to optimize the microstructure of DE composites. FEM first calculates actuation performance and the effective modulus across varied filler combinations, with these data used to train a convolutional neural network (CNN). Integrating the CNN into a multi-objective genetic algorithm generates designs with enhanced actuation performance and material modulus compared to the conventional optimization approach based on FEM approach within the same time. This framework harnesses artificial intelligence to navigate vast design possibilities, enabling optimized microstructures for high-performance DE composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.