Abstract

The 5-year survival of non-small cell lung cancer patients can be as low as 1% in advanced stages. For patients with resectable disease, the successful choice of preoperative chemotherapy is critical to eliminate micrometastasis and improve operability. In silico experimentations can suggest the optimal treatment protocol for each patient based on their own multiscale data. A determinant for reliable predictions is the a priori estimation of the drugs’ cytotoxic efficacy on cancer cells for a given treatment. In the present work a mechanistic model of cancer response to treatment is applied for the estimation of a plausible value range of the cell killing efficacy of various cisplatin-based doublet regimens. Among others, the model incorporates the cancer related mechanism of uncontrolled proliferation, population heterogeneity, hypoxia and treatment resistance. The methodology is based on the provision of tumor volumetric data at two time points, before and after or during treatment. It takes into account the effect of tumor microenvironment and cell repopulation on treatment outcome. A thorough sensitivity analysis based on one-factor-at-a-time and latin hypercube sampling/partial rank correlation coefficient approaches has established the volume growth rate and the growth fraction at diagnosis as key features for more accurate estimates. The methodology is applied on the retrospective data of thirteen patients with non-small cell lung cancer who received cisplatin in combination with gemcitabine, vinorelbine or docetaxel in the neoadjuvant context. The selection of model input values has been guided by a comprehensive literature survey on cancer-specific proliferation kinetics. The latin hypercube sampling has been recruited to compensate for patient-specific uncertainties. Concluding, the present work provides a quantitative framework for the estimation of the in-vivo cell-killing ability of various chemotherapies. Correlation studies of such estimates with the molecular profile of patients could serve as a basis for reliable personalized predictions.

Highlights

  • Worldwide, lung cancer accounts for most cancer related deaths among both men and women [1]

  • We develop a methodology for the quantitative estimation of the cytotoxic efficacy of cisplatin-based doublets on cancer cells by applying a simulation model of cancer progression and response

  • We evaluate the effect of in vivo microenvironment of real tumors, as expressed by measurable tumor proliferation kinetics, such as how fast the tumor grows, the percentage of cells that are actively dividing, the resistance of stem cells, etc. on treatment outcome so as to derive more accurate estimates

Read more

Summary

Introduction

Lung cancer accounts for most cancer related deaths among both men and women [1]. Non-small cell lung cancer (NSCLC) represents the most common type [1]. If treatment fails, a considerable time will have passed during which the tumor may have advanced or even become inoperable [4]. Treatment choices have routinely been based on stage, tumor size, location, lymph node or distant metastasis and overall health status. The exploitation of the molecular profile of cancer cells as treatment selection criteria in NSCLC has only been limited to the consideration of EGFR or ALK mutations as therapeutic targets [5,6]. The consideration of the molecular landscape, not to mention the complete genome sequencing, of cancer cells to guide treatment choice is a promising new research area in the field of personalized medicine [7,8]

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call