Abstract

The marine ecosystem harbors unique and diverse bioactive compounds that can offer a vast repertoire of molecules with therapeutic properties. In the present study, four different species of red marine seaweeds were analyzed for its phytoconstituents and the potent antioxidant and anti-inflammatory activity of the methanolic extracts were screened and determined. The results revealed that, among the 4 samples, G. corticata, scored a good antioxidant potential by DPPH (67.61 ± 1.23%, IC50 = 577.7µg) and metal chelation assay (29.40 ± 0.32%, IC50 = 1684µg). The anti-inflammatory analysis has shown that, H. dialata was found to exhibit maximum inhibition against the albumin denaturation (83.50 ± 0.24%), whereas G. corticata was observed to measure a maximum inhibition in heat-induced hemolysis (60.40 ± 0.46%) and proteinase inhibition assay (83.30 ± 0.18%). An extensive literature survey was carried out for the bioactive compounds in G.corticata; it was examined for drug likeliness by ADME analysis and toxicological parameters. Further, the best selected bioactive compounds were subjected to in silico molecular docking with pro-inflammatory target, cyclooxygenase (COX-2). Hexadecanal and Neophytadiene were reported to obtain the highest binding affinity (-5.3) for COX-2 enzyme. Hence, in silico molecular docking studies had shown that G. corticata was found to possess potential anti-inflammatory activity that can prevent conversion of arachidonic acid to prostaglandins by inhibiting COX-2. In addition, molecular dynamic simulation studies have shown the stability of Hexadecanal-6COX complex. To conclude, the outcomes of the present study may shed light on the understanding of the usage of bioactive compounds for therapeutic purpose.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call