Abstract
The multifaceted interplay between neurodegenerative pathologies, including Alzheimer’s disease (AD), and the highly virulent severe acute respiratory syndrome coronavirus (SARS-CoV), is implicated in various conditions. AD and SARS-CoV pathogenesis involve the APOE4 allele, NLRP3 inflammasome, and ACE2-SPIKE complex. APOE4, a genetic polymorphism of the APOE gene, is associated with an increased susceptibility to AD. NLRP3, an inflammatory protein of the innate immune system, plays a pivotal role in immune response cascades. In SARS-CoV, the ACE2 receptor serves as the principal portal for cellular entry, while APOE4 intricately interacts with the ACE2-spike protein complex, enhancing viral internalization process. The interaction of NLRP3 with the ACE2-spike protein complex leads to increased inflammatory signaling. The convergence of APOE4/NLRP3 and ACE2-spike protein complex interactions suggests a possible link between SARS and AD. Therefore, the current research centralizes the association between by utilizing SARS-CoV datasets to explore possible mechanisms that account for the pathogenesis of SARS-CoV and AD. The work is further extended to unveil the molecular interactions of APOE4 and NLRP3 with the ACE2-Spike protein complex at the molecular level by employing molecular dynamics simulation techniques. The therapeutic efficacy of Chyawanprash nutraceuticals is evaluated as their inhibitory potential towards APOE4-ACE2-Spike protein and NLRP3-ACE2-Spike protein complexes. Notably, our simulations unequivocally demonstrate the robust and enduring binding capability of the compound Phyllantidine with the target complexes throughout the simulation period. The findings of the studies further corroborate the primary hypothesis of APOE4 and NLRP3 as driver factors in the pathogenesis of both SARS-CoV and AD. Therefore, this research establishes a paradigm for comprehending the complex interaction between AD and SARS-CoV and lays the groundwork for further study in this domain. Communicated by Ramaswamy H. Sarma
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.