Abstract
Morphine may be administered in pregnant women as an analgesic agent. The transplacental pharmacokinetics (PK) of morphine varies during pregnancy because of physiological and metabolic changes. In this work, we use a multi‐compartment model to simulate ex vivo human placental transfer studies of morphine. The computational model is based on a recently published model for metformin with both passive and active transport kinetics. Modifications were made to incorporate morphine‐specific transfer parameters. Parameters for the PK models were determined via the nonlinear regression method. In addition, the Latin hypercube sampling (LHS) method was used for the global parameter analysis of the model. Simulation results show good agreement between the model and observed fetal and maternal morphine concentrations. In addition, the lower efflux of morphine from fetal to maternal plasma reflects reduced P‐glycoprotein (P‐gp) transport as pregnancy progresses, which leads to slower clearance of morphine in the maternal plasma. The LHS analysis also indicates the more significant roles played by the passive diffusion parameters than the active transport parameter on the fetal/maternal morphine concentrations. In conclusion, we used an in silico model to investigate the transplacental properties of morphine and to predict the in vivo transplacental properties of morphine when PK parameters change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.