Abstract

Maize Chlorotic Mottle Virus (MCMV) is a deleterious pathogen which causes Maize Lethal Necrosis Disease (MLND) that results in substantial yield loss of Maize crop worldwide. The positive-sense RNA genome of MCMV (4.4 kb) encodes six proteins: P32 (32 kDa protein), RNA dependent RNA polymerases (P50 and P111), P31 (31 kDa protein), P7 (7 kDa protein), coat protein (25 kDa). P31, P7 and coat protein are encoded from sgRNA1, located at the 3′end of the genome and sgRNA2 is located at the extremity of the 3′genome end. The objective of this study is to locate the possible attachment sites of Zea mays derived miRNAs in the genome of MCMV using four diverse miRNA target prediction algorithms. In total, 321 mature miRNAs were retrieved from miRBase (miRNA database) and were tested for hybridization of MCMV genome. These algorithms considered the parameters of seed pairing, minimum free energy, target site accessibility, multiple target sites, pattern recognition and folding energy for attachment. Out of 321 miRNAs only 10 maize miRNAs are predicted for silencing of MCMV genome. The results of this study can hence act as the first step towards the development of MCMV resistant transgenic Maize plants through expression of the selected miRNAs.

Highlights

  • Maize Chlorotic Mottle Virus (MCMV) (Tombusviridae: Machlomovirus) is one of the most harmful pathogen of maize (Zea mays) which, independently or synergistically with one or more of the viruses from other members of Potyviridae family such as Sugarcane Mosaic Virus (SCMV), causes significant yield losses in maize crop by causing Maize Lethal Necrosis Disease (MLND) (Bockelman et al, 1982; Wu et al, 2013)

  • To boost the defense system of Zea mays against the RNA genome of MCMV, genome encoded miRNAs of Zea mays can be expressed after the potential miRNAs of Zea mays targeting MCMV genome are found

  • The core target of this study was to find the miRNA targets in the genome of MCMV, which can be targeted by specific miRNAs of Zea mays

Read more

Summary

Introduction

Maize Chlorotic Mottle Virus (MCMV) (Tombusviridae: Machlomovirus) is one of the most harmful pathogen of maize (Zea mays) which, independently or synergistically with one or more of the viruses from other members of Potyviridae family such as Sugarcane Mosaic Virus (SCMV), causes significant yield losses in maize crop by causing Maize Lethal Necrosis Disease (MLND) (Bockelman et al, 1982; Wu et al, 2013). MCMV first emerged in Peru in 1974 (Castillo and Hebert, 1974) and afterwards in America (Uyemoto et al, 1980; Jiang et al, 1992) and has recently been detected in different regions around the world, including China (Xie et al, 2011), Taiwan (Deng et al, 2015), and Africa (Lukanda et al, 2016; Wangai et al, 2016). Biological indexing, ELISA, electron microscopy, RT-PCR and surface plasmon resonance are among the frequently used detection approaches for MCMV and new strategies are under development for improved diagnosis (Zhang et al, 2011)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call