Abstract

Calcification in bone, cartilage, and cardiovascular tissues involves the release of specialized extracellular vesicles (EVs) that promote mineral nucleation. The small size of the EVs, however, makes molecular level studies difficult, and consequently uncertainty exists on the role and function of these structures in directing mineralization. The lack of mechanistic understanding associated with the initiators of ectopic mineral deposition has severely hindered the development of potential therapeutic options. Here, we used multiscale molecular dynamics simulations to investigate the calcification within the EVs. Results show that Ca2+-HPO42- and phosphatidylserine complexes facilitate the early nucleation. Use of coarse-grained simulations allows investigations of Ca2+-PO43- nucleation and crystallization in the EVs. Systematic variation in the ion-to-water ratio shows that the crystallization and growth strongly depend on the enrichment of the ions and dehydration inside the EVs. Our investigations provide insights into the role of EVs on calcium phosphate mineral nucleation and growth in both physiological and pathological mineralization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.